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Abstract. By shifting lhe parity operator in phase space, one obtains a class of operators, 
which we call the Wiher  operator, because its expectation value is eqnal to the Wigner 
function. Calculating the "muta tor  of Wigner operaton with different argurnenh. we show 
that the corresponding observables cannot be measured simultaneously. Introducing a new 
parameter, we give a trace-class generalization of this operator. The displaced number stakes of 
the harmonic osallator constitute the 'natural' eigenstate basis of lhe corresponding generalized 
Wigner operator. Establishing the integral representation of this operator we show that its 
expectation value is proportional to the 8- and P- and Wigner functions at special values of 
the parameter. We illustrate this connection with the caherent, number and squeezed states of 
the harmonic oscillator. 

~~ 

1. Introduction 

Generally the state of a classical system is described by a probability density function over 
the phase space and the physical quantities are represented by functions of the generalized 
coordinates and momenta, while in the case of a quantum system the corresponding objects 
are the density operator and the Hermitian operators, respectively. 

It is well known that the idea of phase space is problematic in quantum mechanics, since 
the Heisenberg uncertainty relation forbids the simultaneous .characterization of a particle 
by canonically conjugate variables. For a point particle these variables are the position and 
the momentum; in the case of an optical mode they are the two quadrature components of 
the oscillating field. It follows that the state of a quantum system cannot be described by 
a normal probability density function over thc phase space, whose value at a given point 
would be the probability of finding the system at that point. 

However, it is possible to define certain quasi-probability density functions, which 
resemble in many of their properties the classical probability density functions. Thus, 
we can represent physical quantities by A(q, p) classical functions and physical states by 
certain PQ(P, q )  quasi-probability density functions which fulfil the condition 

(2) =/dq/dPA(q,P)PQ(q ,P)  (1) 

where 2 is the operator corresponding to the classical quantity A(q, p). (For the sake 
of simplicity, throughout this paper we consider one-dimensional systems, and therefore 
two-dimensional phase spaces.) 

If we require P&, p) to possess certain properties, detailed in [1,2], it follows that 
P&, p) must be identical to the Wigner function: 

~ , ( q , p ) = -  CIX (4-xlblq+x)e*'PX''. (2) 7rfi 
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The Wigner function is suitable to represent the state of the system over the 
corresponding classical phase space if we calculate the expectation value by (1) of a 
symmetrically ordered operator A. For complete reviews on the Wigner function see [I-31. 

Looking at the definition of the Wigner function, we note that its value in the origin is 
proportional to the expectation value of the parity operator PO: 

and that the proportionality factor consists of universal constants. 
In what follows we shall show that the value of the Wigner function at any point of 

the phase space can be related to the expectation value of an operator in a similar manner, 
which therefore can be given the name Wigner operator. 

We note that this concept has recently been introduced in a different context in [4]. 
The connection between parity and the Wigner function was already implicitly contained 
in the work of Cahill and Glauber [51 and later noticed again by Englert 161. In [7] an 
experiment has been described to measure the parity of an optical field mode, i.e. the value 
of the Wigner function at one special point, namely at the origin. 

In section 2 we first establish the correspondence between the Wigner operator and the 
Wigner function by using the variables q and p .  Then going over to complex coordinates and 
calculating the commutator of Wigner operators with different arguments we show that they 
represent incompatible physical quantities. In section 3 we give a trace-class generalization 
of this operator and point out that the displaced number states of the harmonic oscillator 
form the 'natural' eigenstate basis of this generalized Wigner operator. Using its integral 
representation we show that its expectation value is proportional to other quasi-probability 
density functions at special values of the parameter. Finally, we illustrate this connection 
with the coherent, number and squeezed states of the harmonic oscillator. 

2. The shifted parity operator and the Wgner function 

Comparing formulae (2) and (3) we note the phase factor and that the matrix elements of 
the density operator are to be taken between coordinate basis states displaced relative to ~. 
each other. 

Since the displacement operator 
i(pi-q,%fi &q, p )  = e 

&,, p ) ~ x )  = ef9pfi+ipx/*lx + q )  

affects the elements of the coordinate basis as 

we assume that a Wigner operator can be defined as 
1 

'bir(%P) = ;;iE&2.P)Poo.f-'(4.P) 

where the factor 1/zA ensures that we, get precise correspon 
in the connection stated in the introduction. 

nce with the Wigner 

(4) 

(5) 

nction 

2.1. Expectation value of the Wigner operator 

We are now going to give a proof for the connection between the Wigner function and the 
Wigner operator. 
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Statement. In any state the expectation value of the Wigner operator corresponding to any 
fixed point in phase space is identical to the value of the Wigner function of that particular 
state at that specified point: 

(%q, P ) ) p  =~wP(q, P ) .  (7) 

Prooj! To verify this relation we represent the physical state by the density operator j and 
expand the trace in the coordinate basis. Then 

( k q ,  p)jP = Tr(B W ( q 3  PI) 
1 

= 1.. (xlP^-$(q,P)PoB-'(q, P)lXj 

= nh / h / d y  ( ~ I B l u ~ ( Y I ~ ( ~ . ~ ) ~ o ~ - ' ( ~ . P ) l x ) -  (8) 

Using (5) it is easy to obtain the formulae for $-l(q,  p ) [ x }  and (y[&q. p )  in the above 
formula. Since & - q )  = 1q - x) and (y - q1q - n) = S(y - (2q - n)) we obtain: 

( W ( q ,  P ) ) ~  = -& /" dx / dy (xl,6[y)eipy'*S(y - (2q -x))e-ipr'h 

W Z f i  1 
nh 

= - / dz (q - zlbk + z)e 

In what follows we are going to use the annihilation and creation operators 2 and at: 

and the corresponding complex coordinates 01 and CL* in phase space. The parameter p 
depends on the particular system under consideration. With this notation the displacement 
operator and the Wigner operator take the forms 

(11) 

(12) 

It is interesting to note that apart from the factor l / (nh)z  the square of the Wigner 
operator is just the identity operator. Thus the Wigner operator is one of the self-adjoint 
square roots of the identity, This does not contradict known theorems about the square root 
of positive sei€-adjoint operators [PI, because the Wigner operator is not positive. 

2.2. Commutator of Wigner operators wifh d@erent arguments 

The observables represented by the Wigner operators with different arguments cannot 
be measured simultaneously, because Wigner operators with different arguments do not 
commute. 

at'-.*t 

1 
nh 

&U) = e  

@ ( O r )  = --B@)F06-'(0I). 
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Now we calculate this commutator. With the help of the anticommutators 

[Po, a)  = 0 

+(a)W(p) = -B(or)~oB(-or)B(B)~oOd(-p) 

= - B(or)B (or) Po Poi3(-p) B ( -p) . 

= e$(aP-c*6)fi or ( + B )  

{Fo, a'} = 0 
it is easy to verify that &&or) = &or)& Using this equation 

1 
(Jw 
(Jw 

1 * . . *  

Since the product of two displacement operators i s  

we find that 
1 

+(or)+@) = ---B(2&-2p) 
( n W  

( n W  
ee'~-'~B(2(or - 8)). 1 -- - 

So the commutator of two Wigner operators is 

[+(or), + ( p ) ]  = - (ea*a-apB(z(or - p))  - e ~ = - a a * ~ ( 2 ( p  -or))) 
1 

(m* 
which equals zero if and only if or = p. 

definite parity simultaneously with respect to different points in the phase space. 
This result is the consequence of the simple fact that generally a state cannot have a 

3. 'kace-class generalization of the parity and the Wigner operator 

Unfortunately the parity operator, and therefore the Wigner operator, are not trace-class 
operators: 

which is clearly not a convergent series, but an oscillatory one. 
We can, however, introduce operators, which are trace-class, and which can be brought 

arbitrarly close to the parity operator by changing a parameter. 
The convergence, or better to say the divergence, of the series C~o(-l)" is a problem 

dating back to Euler. One of the simplest possibilities for generalizing it to a convergent 
series is the substitution of -1 by a real number A, with IAl < 1. Then the sum of the 
series CzoAn obtained this way is 1/(1 - A) and this tends to 4 if A goes to -1 + 0. 
For simplicity we do not want the sum of the generalized series to depend on the particular 
value of the parameter A, but we do want its limit to be f as A -1 + 0. Thus we have 
to multiply it by (1 - A)/Z. 

So, we would like to find some operators depending on the parameter A which have the 
trace f ( 1  - A)CEoAn. A possible choice is the generalized parity operator &A) which 
we define by its effect on the elements of the number state basis as 

for any In) and for IAl i 1. 
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The term 'generalized parity' is justified in the interval -1 < A c 0 because of the 
alternating sign of A". Furthermore, this operator reduces the weight of a number state in 
a pure state as IAI decreases or n increases. In the special case A = 1 it projects onto the 
vacuum state (and multiplies by 4). 

With the help of &A) it is straightforward to generalize the Wigner operator as 
1 

@(CY, A) = --b(a)P(A)h(-a). xh (20) 

3.1. Eigenstate basis of the Wigner operator 

Any complete set of vectors which have a definite parity with respect to the phase-space 
point a, is an eigenstate basis of the generalized Wigner operator W(u, A) for all [AI < 1. 
One such possibility is the set of the displaced number states of the harmonic oscillator: 

As can easily be verified with the help of definition (20), these states are the eigenstates 
of the corresponding @(a, A) with the eigenvalues [(l - A)/(2nh)lAn, for all IAl c 1. 
Furthermore, they are also the eigenstates of the Wigner operator with the eigenvalues 
(-1)"/7Cfi. 

In what follows we shall need the expansion of the displaced number state$ in the 
number state basis. Since 

In,a) = b(a)[n).  (21) 

(7.2) &) = e-lal'/2e(LBte-a'B 

and 

we can write In, a) as follows: 

The scalar product (mln, a) can be expressed with the associated Laguerre polynomials 
L,?(x) 191: 

e-lu12/2(-a*)"-m g ~ - m ) ( l a l 2 )  if m c n 
(26) l~ e - l . l ' / 2 d m - n ~ L c m - n ) ( l , 1 2 )  m!  if m > n. 

(mln, 4 = 

Thus equation (25) can be given another form: 
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3.2. Moments of the generalized Wigner operator 

Now we are going to calculate the expectation value of the generalized Wigner operator in 
the state described by the density operator 8. Since the expansion of the trace in the suitable 
displaced number state basis is particularly simple, we may say that this is the 'natural' 
basis of the generalized Wigner operator: 

M G Benedict and A Czirjdk 

We shall use this result in section 6 in specific examples. 
It can similarly be obtained that the higher moments of *(a, A) are 

for every positive integer k, so one can easily calculate also the variance of the generalized 
Wigner operator. 

4. Integral representation for the generalized Wigner operator 

Due to the trace-class extension introduced in the previous section, the Hilbert-Schmidt 
norm (defined far an arbitrary operator k as Tr(kfF)) of the generalized Wigner operator 
is finite, namely 

=~(%) 1 - h  2 m  CAz"= 1 - A  
n=0 4rrh(l + A ) '  

Using the special features of the displacement operators, namely that they play the role 
of a basis in the space of operators with finite HilbertSchmidt norm, similarly to the Fourier 
basis in the space of the square-integrable functions, Cahill and Glauber have shown [5] 
that any operator k with a finite HilbertSchmidt norm can be written in the form 

where 

f(0 = Tr(kfi-'(O) (33) 

Tr(&)k'(:')) = xS(t - 6') 
is square-integrable. The validity of (32) can be easily seen using the 'orthogonality relation' 

(34) 

which can be obtained with the help of (15). 
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If we apply equation (33) to the generalized Wigner operator and expand the trace on 
the displaced number states (21), we find that 

w( t ,a ,  A) = Tr(b-'(t)W(a, A)) 

Let us have a closer look at the matrix element in the above sum. If we apply 

(36) 
Using equation (26) in the special case of m = n, the matrix element of the displacement 

equations (21) and (15) we get 

(n, al&-t)ln, a) = em~-"~(nIb( - t ) ln) .  

operator between the number states above takes the form 

(37) (nlb(-g)ln) = e +  '12 L,, (0) (111~). 

If we back-substitute equations (36) and (37) in (33, we get 

The sum in the above expression can be written in a closed form (cf 8.975,l. of [9]). This 
way we arrive at 

With this 'coefficent function' we can write the integral representation of the generalized 
Wigner operator as 

If we take the limit A + -1 f O  in (40), we can write the Wigner operator in an integral 
form: 

which is essentially the Fourier transform of the displacement operator over the phase space. 

5. Connection with other quasi-probability density functions 

If we evaluate the expectation value of the generalized Wigner operator using its integral 
representation (40). we obtain the following: 

This is simply the s-ordered quasi-probability density function of Cahill and Glauber [5] 
with the correspondence s = (A + I)/@ - 1). which interpolates between the Wigner, Q- 
and P-functions. Thus the generalized Wigner operator is essentially a quasi-probability 
density upernfor, since its expectation value is the whole class of quasi-probability density 
functions along the parameter h or s, equivalently. 
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We note that the interval -1 c A < 0, where the generalized parity operator transforms 
the states with an alternating sign, corresponds to the well-behaved quasi-probability density 
functions. 

In what follows we detail the connection of the generalized Wigner operator with the 
Q- and P-functions. 

5.1. The Q-function 

In the case of the Q-function we can also obtain the correspondence with the help of (29). 
If we write A = 0 in the expression of @(a, A) we get an operator which projects every 
state onto a coherent state (and multiplies it by lJ2nh). In accord with this, if we substitute 
A = 0 in (29), there remains only the zeroth term in the sum, while all the others vanish 

1 . .  1 1 
23th 2nh 2h (@@,A = o)), =~-(op(-a)$B(orjio) = -(ai$ia) = -Q(u). (43) 

Thus the expectation value of the generalized Wigner operator at A = 0 is proportional to 
the Q-function. 

5.2. The P-function 

Since the P-function is singular in general [lo], we cannot expect that in the convergence 
interval of (29) for A we get the P-function. 

However, if we let 7, + -CO, apart from the factor lJ2h we obtain the P-function of 
the corresponding state. 

Taking into account (22) the trace in (42) can be written as 

Tr('B(()) = e-181'/* Tr($e"e-P'') e-181'flXN(t). (44) 

where X N ( ~ )  is the characteristic function for normal ordering [ll].  Thus an equivalent 
form of (42) is the following: 

Now in (45) the first term of the exponent vanishes as A + -CO, so there remains only 
the Fourier transform of the characteristic function for normal ordering, which by definition 
is the P-function [ 111. 

6. Examples 

Finally we illustrate the above connections by calculating the expectation value of the 
generalized Wigner operator in the coherent, number and squeezed states of the harmonic 
oscillator, using formula (29). 

6.1. Coherent state 

Let the state of an oscillator be the coherent state IF). In this case the density operator is 
$0 = I,9)(,9I, so the matrix element to be calculated in (29) is the following: 
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After substitution into (29) we get 

It can readily be seen that in the limits of h at 0 and -1 (@(a, A))# is the well known 
Q- and Wigner function of the coherent state, respectively, while as h --f -CO, (@(a, h))p 
tends to S(a - ,9) which is the P-function of the coherent state multiplied by I/%. 

6.2. Number state 

In the case of a number state & = [m)(ml, thus the matrix element in (29) is 

(n,aIbmIn,a) = I(min,a)12. (48) 
Using (26) and back-substituting in (29), we get the following result for the expectation 
value of the generalized Wigner operator in a number state: 

It can be shown that for h + -1 + 0 this formula reproduces the Wigner function of the 
number state Im): 

As a byproduct of this calculation we have obtained the following non-trivial relation 
between the Laguerre polynomials: 

(52) 

6.3. Squeezed state 

If the oscillator is in a squeezed coherent state, it can be described by the ket 

IS. 5 )  = & S ) h J )  (53) 
where 10) is the vacuum state of the harmonic oscillator, and 

e: (B'b"-f(bf)Z) i (5)  = - (54) 
is the squeezing operator. The matrix element 

(n,a~jp,Fln,a) = I(nI~(-a)~(S)~(t)Io)12 = ICAS -& (55) 
where c, (,4 -CY) is the expansion coefficient of the [ p  -a, t) squeezed state in the number 
state basis. These coefficients can be written in the analytic form [12]: 

( p  - a)cosh(r) + (p - a*)e'@ sinh(r) 
p i G q 5 j  xH, ( 
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where reio = 
generalized Wigner operator in the squeezed state (53) is 

(*(a, 1 ) ) p . t  = 2nfl exp (-IB - 

M G Benedict and A Cziijdk 

and H, is the nth Hermite polynomial. So the expectation value of the 

1-1 ( ~ 1 '  - f (@* - 01 * ) 2 e io + ( p  - u)Le-io) tanh(r)) 

O0 (+e'" tanh(r)h)" I H n  ( ( B  - a)cosh(r) + @" - a*)eiQ sinh(r) 

"=O n!cosh(r) pziQq 
(57) 
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